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Atmospheric exploration trade-study

*Balloon
*Simple technology

Demonstrated on Venus

+Altitude change possible,
but difficult

sLocation change not
possible

Airship
«Difficult to stow and deploy

+Altitude change possible,
but difficult

*Speed is slow:
scannot stationkeep
scannot stay in sun

*Can keep latitude
(depending on
altitude)

*Airplane

*Airplane design uses
terrestrial experience

*Stow and deploy concepts
demonstrated by ARES

Altitude change easy (within

design limits)

*Speed allows stationkeeping
and continuous sun

*Easy to keep latitude
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(simplified) Aerodynamics of flight on Venus

*Horizontal flight requirement: lift on wing = gravity
‘F=%pC AV?2=mg

Variables

*p (atmospheric density): function of altitude

C, (lift coefficient): typically around 1 for optimum flight
*A (wing area)

*\/ (velocity)

Flight velocity and power:
*\/ = SQRT (mg/A)/(2pC,)
*Note that (m/A) = wing loading

*Power = drag force times velocity

*If we make the simplifying assumption that drag is proportional to lift
via the L/D (lift to drag) ratio, and C, is approximately 1:

-P = mg/(L/D)*V = (mg)?? (L/D) (2pA)™*
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Solar Airplane Figure of Merit

*\We can calculate a solar airplane figure of merit showing the ratio of
sun intensity to the power required for level flight at a given wing area.
The solar intensity is proportional to 1/d?, and power required to fly
proportional to the square root of the atmospheric density. Thus: flying
IS easiest on a planet close to the sun with high atmospheric density:

If we simplify by neglecting the parasitic drag (proportional to v°) the figure of merit F is

Planet d | g (gravities) p (bar) F
(AU)

Earth |1 1 1 1
Venus | 0.723]0.91 1 2.2
Mars | 1.524]0.38 0.0064 (average) | 0.15
Jupiter | 5.203 | 2.36 (equat.) | 1 0.01
Saturn | 9.57210.92 (equat.) | 1 0.01
Titan |9.5720.14 1.5 (at surface) |0.27

For Venus, Jupiter, and Saturn, flight is assumed to be at the one bar level

Does not include effect of atmospheric opacity
AN A
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Solar Airplane Figure of Merit

*50-60 km above surface, Venus atmosphere density profile
similar to Earth's

Airplane design can use Earth experience

*Gravity 90% of Earth's

*Powered flight easier

*Above the clouds, Venus has more sunlight than Earth

*Solar flight is easier on Venus than on Earth
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Initial sketch of wing-folding
for small aircraft for Venus

2000 version

fold line

| |

=i

Aeroshell diameter
1.2 meters

Aircraft concept was essentially a flying-wing design. A small tail gives a small
amount of additional control authority with no additional fold.



Early Venus-aircratt design:
3-D modelled




Venus airplane 1nitial concept

artist's conception by Les Bossinas

NS




Variant 2000 small
Venus aircraft

Venus airplane
3 folds
Medium wing chord version



Small Venus aircraft:
OAI 2001 proposal




Chris LaMarre's Venus
Airplane configuration
August 2001

S=1.6m?
b=438m
AR =12

Mass = 15 kg
DF 101 and SG8000 airfoils
investigated
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Folded in aeroshell
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Venus
airplane
unfolding
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5.16 m
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Folding for initial
RASC version

3.0m Aeroshell

/

70 Deg Cone Angle




RASC-"August 2003

(closer to final)
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RASC-August200:

(rendered)




RASC- Allgllst 2003

(folding scheme still needs work!)
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Yvenus

alEplane:

plan View*




~the siz grof the \M“‘""ﬁ'mv W
-Aceroshellshape basedion Viars Pathfinde

Side view

Top view



RASC Venus
airplane
Visualization




Venus Airplane entry mass

VENUS AIRPLANE MASS SUMMARY

System Description Mass Fraction| Mass (kg) Source
Airplane 20% 103 -
Heatsheild Structure 7% 36.05 Pioneer
Heatsheild TPS 13% 66.95 Pioneer
Backshell Structure

(Gussets, Separation ftgs,

Paint, Vent, etc) 12% 61.80 Pioneer
Backshell TPS 8% 41.20 Pioneer
Parachute System 10% 51.50 Pioneer
Airplane Deployment

Mechanism (Separation from

Backshell) 15% 77.25 Mars Airplane
Misc (COMM, Power, Ballast,

etc) 15% 77.25 Mars Airplane
Total Entry Mass 100% 515

Contingency Mass 30% 155

Total With

Contingency 670

NOTE: Mass Fractions Based off Mars Airplane Data Venus Pioneer




Boston University Venus airplane student design,
XQ-V1

«2008. Image courtesy of Greg Thanavaro, Boston University
Dept. of Aerospace Engineering @
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Mars airplane

*6.25 m span
*Aspect ratio 5.6
*101 kg including margin

Tail Retaining Sep. Nut
Drogue Chute/Can

Supersonic
Parachute

AFS Extraction
Mechanism

ARES Mars airplane demonstration models

HS Sep.
Fitting
Stowed AFS
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Power Required to fly at wind speed versus solar availabilitysss

1000000 —
Calculation for 18% solar cell efficiency with 80% packing /
/

Power Required
/////’—\\\\\\\ //177 ;:::::::::
100000 ' _ High altitudes: low density:

12 m \/\ too much power needed
9m to reach airspeed high

enough for level flight

N

Power (W)

10000 7
12rn4”///////”" \V/

9m Lower altitudes: easy to

fly, but takes too much
/ 6m
1000 | /% \“\ /
/A/

. — power to fly at wind speed
Power Available

40
Altitude (km)
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Power Required to fly at wind speed versus solar availabilitysss

Effect of higher solar cell efficiency (with 80% packing)
1000000

Power Required

100000

Power (W)

/

_’/k/ﬁ / Double sided array

- calculation assumes 77%

Power Available
albedo

40
Altitude (km)
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(simplified) Aerodynamics of flight on Venus

For flying at a given velocity:

*C,A =2mg/pV?
*To fly faster, we can either decrease the wing area at constant C,, or else decrease C,,
and hence fly at a less-optimum lift conditions

*Power = drag force times velocity

the simplifying assumption that drag is proportional to lift via L/D (lift to drag) ratio
becomes poor for flight far from optimum C,

*Optimally, you would want to stay at optimum C, and vary wing area

*But the constant L/D approximation ignores parasitic drag, which becomes more
important as wing area decreases

P =mgV/(L/D)

*If you could optimize everything and ignore parasitic drag, the power required to
fly is independent of density and proportional only to velocity

*But, for a solar aircraft, P is proportional to intensity time wing area A
elterative design process needed
*Too simplified: Parasitic drag can’t be ignored!
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